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Abstract

A numerical simulation method is used here for the design and quality control of a material subject to normal

gradual stress r or a cyclic stress r, having fixed cumulative probability F and the number of cycles l; capable of

achieving a given mechanical property such as yield point, elastic limit stress, fracture strength, etc., as well as the

admissible tolerance dF the presence of such property is to be accepted with. With F and dF , the stress of the design rC

can be determined, as well as the variations dm, dr0 and drL of Weibull�s parameters m, r0 and rL, respectively, that the

tolerance dF admits. When cyclic stresses arise, other parameters must be introduced, k1, k2 and p, which produce

variations dk1, dk2, and dp, respectively. The determination of the necessary number of samples to be tested in order to

carry out the quality control of the material, with a given probability of effectiveness, is obtained with variations dm,
dr0, drL, dk1, dk2 and dp, with the parameter dispersion estimated by numerical simulation, and with the help of a

property deduced from the Fischer�s matrix to obtain the parameter dispersion.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The use of probabilistic strength of materials (Weibull, 1939; Kittl and D�ııaz, 1988) had been directed, in

general, to determine the Weibull parameters of Weibull�s cumulative probability function for some ma-

terial subjected to both constant and variable stress fields for mechanical components in service or for

isolated samples manufactured to obtain such parameters. This probabilistic approach had been used on

diverse materials (Kittl and D�ııaz, 1988) subjected to gradual stress. When fatigue is included the problem is

more complex due to the singular characteristics of the fatigue process, so it needs the introduction of other
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parameters that consider such complexity. The mechanical design and quality control for components

subjected to gradual or cyclic stress, treated from a probabilistic point of view, requires of the knowledge of

the dispersions and the variations of the different parameters used to characterize the load process for a

certain level of cumulative probability of occurrence of some mechanical property, in order to define a
design stress value, including an admissible tolerance for such probability.

The main objective of this work is to obtain, through a numerical simulation method, the required

number of samples to be tested to define the design and quality control for some material subjected to

traction, including gradual and cyclic stress, that satisfy a fixed cumulative probability with a corre-

sponding admissible tolerance for them.
2. Gradual stress

According to Weibull�s theory (Kittl and D�ııaz, 1988; Kittl et al., 2001) the cumulative probability of

occurrence of some mechanical property F ðrÞ, for a material subjected to uniaxial stress field, is given by

the following expression:
F ðrÞ ¼ 1� exp

�
� V
V0

r� rL

r0

� �m�
ð1Þ
where r is the stress at which some mechanical property is verified, such as yield point, elastic limit stress,

fracture strength; V is the volume of the material, V0 is the unit of volume, rL is one of Weibull�s parameters

and is the limit of stress bellow which the property will not occur; and the other Weibull�s parameters are m
and r0 which depend on the manufacture process of the material. As all the samples are equal, V ¼ V0.

Once cumulative probability F is fixed design stress, rC, is obtained from Eq. (1). In addition, along with

cumulative probability F there is an admissible tolerance for such probability, dF , associated to variations

dm, dr0 and drL of Weibull�s parameters m, r0 and rL, respectively. Such variations can be obtained from F
and dF using the following equations:
F ¼ 1� exp

�
� rC � rL

r0

� �m�
ð2aÞ

F þ dF ¼ 1� exp

(
� rC � rL

r0

� �mþdm
)

ð2bÞ

F þ dF ¼ 1� exp

�
� rC � rL

r0 þ dr0

� �m�
ð2cÞ

F þ dF ¼ 1� exp

�
� rC � ðrL þ drLÞ

r0

� �m�
ð2dÞ
Provided that any part of the material is calculated using the same rC, the variations producing an ad-

missible tolerance dF must be originated in Weibull�s parameters, that is to say, they come from the ma-

terial (see Fig. 1).

For the same value of rC, when the material, characterized by its respective Weibull�s parameters, is

changed from ðm; rL; r0Þ to ðmþ dm; r0 þ dr0; rL þ drLÞ, cumulative probability F is changed to F þ dF .
With a close approximation, Eqs. (2a) and (2b) determine dm, Eqs. (2a) and (2c) determine dr0, and Eqs.

(2a) and (2d) determine drL. It is easily deduced from Fischer�s matrix (Kittl and D�ııaz, 1988) that the
dispersion of Weibull�s parameters Dm, DrL and Dr0 are given by equations:
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Fig. 1. Diagram of cumulative probability.
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Dm ¼ 1ffiffiffiffi
N

p f ðm; r0; rLÞ

Dr0 ¼
1ffiffiffiffi
N

p gðm; r0; rLÞ

DrL ¼ 1ffiffiffiffi
N

p hðm; r0; rLÞ

ð3Þ
where N is the number of samples to be tested to obtain Dm, Dr0 and DrL; functions f , g and h depend only

of m, r0 and rL, they are constants that may be deduced from a particular case. When the material is

subjected to a variable stress field the use of Fisher�s matrix is more complex and is not dealt with here (D�ııaz
et al., 2002). Thus, in this situation, a numerical simulation method to obtain the dispersion of the Weibull�s
parameters has been developed starting from values m, r0 and rL, determined through experimental values.

Normally the resulting values of m, r0 and rL are obtained using N ¼ 30 testing samples and are an
outcome of obtaining the maximum correlation between independent variable lnðr� ri

LÞ and ln½lnð1=
ð1� F ÞÞ�, where ri

L are several values of rL that are taken from around the smallest value of r. From Eq. (1)

we obtain:
ln nðrÞ ¼ ln ln
1

1� F

� �� �
¼ m lnðr� rLÞ � m ln r0 ð4Þ
Thus, ln nðrÞ is a linear function of lnðr� rLÞ. In the Weibull diagram, ln nðrÞ versus ln r, when r ¼ rL

then ln nðrÞ ¼ �1, which is a good way for obtaining the approximate value of rL. In order to improve rL

several values are chosen in the neighborhood of that first rL value obtained and the best correlation with
better chi-square value, v2, allows for the determination of such parameter.

In order to show how the numerical simulation method works Weibull�s parameters obtained from an

AISI 1020 steel (D�ııaz et al., 1999) subjected to traction test were used. Such steel was elected due to the fact

that it is fairly ductile and is usually employed in the construction of structures. In the case of this steel, the

following values can be considered: m ¼ 14, r0 ¼ 53 MPa and rL ¼ 400 MPa.

The numerical simulation method used here does not require special software, it only needs a routine to

generate random numbers, and the following numerical determinations are easy. The method starts with

the knowledge of Weibull�s parameters m, r0 and rL from an experimental test for some material subjected
to traction. Therefore we know the cumulative probability function given by Eq. (1). Then, using a random
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number generation function we generated 30 random numbers and each one was replaced on the left side of

Eq. (1) in order to determine the respective stress value. This way we have a set of 30 simulated stress

values. After that, the set is put in a rising order. With the set sorted out, the cumulative probability is

evaluated using an estimator. And a new Weibull function is obtained. Finally, this process allows us to
estimate new values for Weibull�s parameters m, r0 and rL. Many iterations can be made in order to obtain

other values for Weibull�s parameters. The computation scheme is:
f06 kji 6 1g ! f� � � rj
i 6 rj

iþ1 6 � � �g $ F j
i

�
¼

i� 1
2

N

�
! fmj; rj

0; r
j
Lg j ¼ 1; . . . ; 100;

i ¼ 1; . . . ;N ¼ 30 ð5Þ
where kji are aleatory numbers, rj
i are simulated stress values, F j

i are cumulative probability estimators, N is

the total number of samples tested, and mj, rj
0 and rj

L are the Weibull parameters obtained by linear re-
gression using rj

L from approximations with a maximum correlation coefficient. One hundred simulations

of 30 testing samples were carried out and the cumulative probabilities F ðmÞ, F ðr0Þ and F ðrLÞ were ob-

tained using the respective 100 values for each Weilbull parameter, as showed in Figs. 2–4. In order to

calculate Dm, Dr0 and DrL all the values that depart from a normal distribution were eliminated, thus

avoiding possible calculation errors. This can be seen in the isolated points on the right in Fig. 2 and on the

left in Fig. 4.

In this case j ¼ 1; . . . ; 100, i ¼ 1; . . . ; 30 and the dispersion values of Weibull�s parameters were:

Dm ¼ 5:25, Dr0 ¼ 10:6 MPa and DrL ¼ 8:06 MPa. With the help of Eq. (3) we may evaluate f , g and h:
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Fig. 2. Cumulative probability of Weibull�s parameter m.
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Fig. 3. Cumulative probability of Weibull�s parameter r0.
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Fig. 4. Cumulative probability of Weibull�s parameter rL.
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f ¼
ffiffiffiffiffi
30

p
Dm ¼ 28:8

g ¼
ffiffiffiffiffi
30

p
Dr0 ¼ 58:1 MPa

h ¼
ffiffiffiffiffi
30

p
DrL ¼ 44:2 MPa

ð6Þ
For another hand Eq. (2) allows one to determine the expressions for the variations of Weibull�s parameters

dm, dr0 and drL and then we can find the number of testing samples required in a quality control in order to

get a dispersion compatible with the fixed values for the cumulative probability and its respective admissible

tolerance, F and dF . Such fixed values for F and dF depend on design conditions and are a variable
managed by the designer. The following equations shows how to determine the variations of Weibull�s
parameters:
dm ¼
ln ln 1

1�ðFþdF Þ

� 	h i
ln ln 1

1�F


 �� 

8<
: � 1

9=
;m

dr0 ¼
ln 1

1�F


 �
ln 1

1�ðFþdF Þ

" #1=m
8<
: � 1

9=
;r0

drL ¼
rC � r0 ln 1

1�ðFþdF Þ

� 	h i1=m
rC � r0 ln 1

1�F


 �� 
1=m
8><
>: � 1

9>=
>;rL

rC ¼ r0 ln
1

1� F

� �� �1=m
þ rL

ð7Þ
where rC is the design stress value. Now, using Eq. (3), i.e., the relations obtained from Fischer�s matrix,

that allows us to obtain the dispersions of Weibull�s parameters, with Eq. (7) we can determine the number

of samples to be tested through the following equations:
Nm ¼ f 2

dm2
; Nr0 ¼

g2

dr2
0

; NrL ¼ h2

dr2
L

ð8Þ
where Nm, Nr0 and NrL are the number of samples to be tested to determine Weibull�s parameters m, r0

and rL, respectively, compatible with the fixed cumulative probability and with its respective admissible

tolerance. Eqs. (7) and (8) provide for a criterion to expect that approximately 70% of r values are within a
range of acceptance. If we take 2d instead of d, we obtain approximately 90% of the values of r within the
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range of acceptance. The highest value of the numbers of samples to be tested, given by Eq. (8), must be

chosen. In the case of quality control for some material when a set of material samples to be used is

available, and N samples are tested, where N is the largest value obtained from Eq. (8), parameters m, r0

and rL can be determined, and for design stress value, rC, if the new cumulative probability, obtained from
Eq. (7) is higher than the previous F þ dF , due to new Weibull parameter values then the set of samples

must be rejected or a new rC must be obtained.
3. Determination of Weibulls parameters by the moment method in gradual stress

From Weibull�s cumulative probability function given by Eq. (1), it is easy to show that (Kittl and D�ııaz,
1988; Kittl et al., 2001):
Dr
r� rL

¼
C 1þ 2

m


 �
� C2 1þ 1

m


 �� 
1=2
C 1þ 1

m


 � ð9Þ
where r is the mean value, Dr is the dispersion and C is Euler�s gamma function. The mean value and its

dispersion are given by the following equations:
r ¼ 1

N

XN
i¼1

ri

Dr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1
�
XN
i¼1

ðri � rÞ2
vuut ð10Þ
both are estimated for a series of testing experimental values ri and Weibull�s parameter m is found by using

Eq. (9). In order to introduce rL in Eq. (9), trials are made with different values within the vicinity of a rL

obtained with a certain approximation from a Weibull diagram ln nðrÞ ¼ ln½lnð 1
1�FÞ� versus ln r as shown in

Fig. 5. Then, for the value chosen for rL the chi-square value, v2, must be minimized (see Fig. 6). The other

Weibull parameter r0 is obtained from the following expression:
r0 ¼
r

C 1þ 1
m


 � ð11Þ
When rL is ignored we proceed by using Eq. (9) with rL ¼ 0.
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Fig. 5. Weibull�s diagram of a series of values of r, corresponding to a traction test for an AISI 1020 steel.
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Fig. 6. Determination of rL by obtaining the minimum value of chi-square, v2.
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4. Dispersion of Weibulls parameters and estimation of the number of samples to be tested for gradual stress

In the case of the steel employed here with the value of Weibull�s parameters m, r0 and rL, the numerical
simulation process described in scheme (5) was used to generate 10 simulated test with N ¼ 30 samples in

order to obtain the mean values of Weibull�s parameters and their dispersions when the limit stress rL is

both different from zero and equal to zero. Their respective values are shown in Table 1.

F being the level of cumulative design probability, and dF its respective tolerance, the variation of

parameters dm, dr0 and drL, is obtained from Eq. (2). Table 2 shows the respective Weibull�s parameter
Table 1

Weibull�s parameters m, r0 and rL, their mean values and their dispersions for AISI 1020 steel samples, subjected to traction test,

randomly generated by numerical simulation process, considering limit stress both rL 6¼ 0 and rL ¼ 0

Limit stress rL Weibull�s parameters Mean value Dispersions

rL 6¼ 0 m 15.6 Dm ¼ 1

r0 54 MPa Dr0 ¼ 0:5 MPa

rL 400 MPa DrL ¼ 0 MPa

rL ¼ 0 m 135.3 Dm ¼ 21

r0 453 MPa Dr0 ¼ 0:83 MPa

Table 2

Weibull�s parameters deviations dm, dr0 and dL and design stress values for AISI 1020 steel, subjected to traction test, with a fixed

cumulative probability F and admissible tolerance dF , with F ¼ 10�7 and F þ dF ¼ 10�6, and considering limit stress both rL 6¼ 0 and

rL ¼ 0

Limit stress rL Weibull�s parameters Variations parameters Stress of design rC

rL 6¼ 0 m dm ¼ �2 417 MPa

r0 dr0 ¼ �8 MPa

rL drL ¼ �3 MPa

rL ¼ 0 m dm ¼ �19:3 402 MPa

r0 dr0 ¼ �7:64 MPa



Table 3

Number of samples to be tested to estimate Weibull�s parameters m, r0 and rL with a fixed cumulative probability F and admissible

tolerance dF , with F ¼ 10�7 and F þ dF ¼ 10�6, for AISI 1020 steel samples, subjected to traction test, randomly generated by nu-

merical simulation process, considering limit stress both rL 6¼ 0 and rL ¼ 0

Limit stress rL Number of samples to estimate the corresponding Weibull�s parameters

Nm Nr0 NrL

rL 6¼ 0 207 53 217

rL ¼ 0 36 0.35 –
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variations obtained when limit stress rL is both different from zero and equal to zero in the case F ¼ 10�7

and F þ dF ¼ 10�6.

All dispersions in each Weibull parameter may be increased by a constant factor, but in order to simplify

let a same factor l for each one be, where l is a real number. Then, we can generalize the use of Fisher�s
matrix property (Kittl and D�ııaz, 1988), given by Eq. (3), to obtain the number of samples to be tested to

determine the Weibull parameters compatible with the fixed cumulative probability and with its respective

admissible tolerance. Therefore, considering Eqs. (3) and (8), it gives:
lDm ¼ 1ffiffiffiffi
N

p f ðm; r0; rLÞ; Nm ¼ f 2

d2m
¼ l2 � D2m � N

d2m

lDr0 ¼
1ffiffiffiffi
N

p gðm; r0; rLÞ; Nr0 ¼
g2

d2r0

¼ l2 � D2r0 � N
d2r0

lDrL ¼ 1ffiffiffiffi
N

p hðm; r0; rLÞ; NrL ¼ h2

d2rL

¼ l2 � D2rL � N
d2rL

ð12Þ
When l ¼ 1 the reliability is approximately equal to 70%. The comments below Eq. (8) can also be applied

here. Table 3 shows such number of test samples in order to obtain Weibull�s parameters with a fixed

cumulative probability F and with a fixed admissible tolerance dF for a determined design stress value rC,

when the limit stress rL is both different from zero and equal to zero.

The difference between design stress values rC when the limit stress rL is both different from zero and

equal to zero is: (417) 402 MPa )/402 MPa� 3% i.e. a very small value. Thus, the error would not be too
large and the design would be safer if value rL ¼ 0 is adopted.
5. Cyclic stress

In the case of the material being subjected to cyclic loads the phenomenon can be studied using a

probabilistic approach too and taking into account different mechanical properties. Fig. 7 shows the

evolution of one of these mechanical properties, such as yield point, elastic limit stress, fracture strength,

with the application of a gradual load. We will assign only one cycle l ¼ 100 to this load, where l is the
number of load cycles. When more cycles are applied, l ¼ 101; l ¼ 102; . . . ; l ¼ 107, the curve of the cu-

mulative probability by cyclic stress r and number of cycles l, F ðr; lÞ, takes up values starting from a limit

stress rL, that we shall consider independent from l due to the mechanism of fatigue by cyclic loads.

For a given r, the way in which l varies is shown in Fig. 8, where it can be presumed that there is an
evolution similar to one of Weibull�s function for F ðr; l ¼ kÞ.
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6. Determination of the parameters in cyclic stress

When we consider cyclic stress the cumulative probability F ðr; lÞ may be written as follows:
F ðr; lÞ ¼ 1

�
� exp

�
� r� rL

r0

� �m��
½1� k1 expf�k2ðln lÞpg� ð13Þ
in which m, r0 and rL are the known Weibull�s parameters (Kittl and D�ııaz, 1988; Kittl et al., 2001) and k1,
k2 and p are other parameters that may describe the process of fatigue due to cyclic stress (Kanninen and

Popelar, 1985; Suresh, 1991). We can determine parameters m0, r0
0, r

0
L, k

0
1 , k

0
2 and p0 as a first approximation

to true parameters m, r0, rL, k1, k2 and p, and in this case only six points are enough to determine them. In

order to get a better approximation, the following expressions can be minimized:
Min
X
i;j

½Fij � F ðr; lÞ�2

Fij ¼
nij
N

; ri 6 r; lj 6 l

F ðr; lÞ ¼ F ðr; l;m; r0; rL; k1; k2; pÞ

ð14Þ
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where Fij is the observed cumulative probability, N is the number of samples tested and nij is the number of

samples subjected to ri with lj number of cycles. If we made a differential expansion to F ðr; lÞ the following
expression is obtained:
F ðr; lÞ ¼ F ðr; l;m ¼ m0 þ om;r0 ¼ r0
0 þ or0; rL ¼ r0

L þ orL; k1 ¼ k01 þ ok1; k2 ¼ k02 þ ok2;

p ¼ p0 þ op0Þ

¼ F ðr; l;m0; r0
0; r

0
L; k

0
1 ; k

0
2 ; p

0Þ þ oF ðr; l; 0Þ
om

omþ oF ðr; l; 0Þ
or0

or0 þ
oF ðr; l; 0Þ

orL

orL

þ oF ðr; l; 0Þ
ok1

ok1 þ
oF ðr; l; 0Þ

ok2
ok2 þ

oF ðr; l; 0Þ
op

op ð15Þ
In Eq. (15) om, or0, orL, ok1, ok2 and op can be obtained in such a way that Eq. (14) is minimized by using

the common least squares method. Finally:
m ¼ m0 þ om

r0 ¼ r0
0 þ or0

rL ¼ r0
L þ orL

k1 ¼ k01 þ ok1

k2 ¼ k02 þ ok2

p ¼ p0 þ op

ð16Þ
7. Dispersion of the parameters in cyclic stress

In order to obtain the dispersion of the parameters in the case of the material being subjected to cyclic

stress we made a numerical simulation with a process similar to that described for materials subjected to

gradual loads. The procedure used here was the following: cumulative probability F has to be a random

number and is obtained from a random number generation function, letting 06 kij 6 1 be; this number may

be transformed into a product k ¼ kikj. We must randomly attribute ki to the first part of Eq. (13) or to the
second part, kij 6 ki 6 1, then the second is kj ¼ k=ki. We obtain ri from ki and lj from kj. Once N pairs

ðri; ljÞ are obtained, we can determine Fij, according to Eq. (14) and the mean values of parameters m, r0,

rL, k1, k2 and p are obtained for each one of those numerical simulations as well as their Dm, Dr0, DrL, Dk1,
Dk2 and Dp. According to Fisher�s matrix (Kittl and D�ııaz, 1988) it may be verified that:
Dm ¼ 1ffiffiffiffi
N

p f ðm;r0; rL; k1; k2; pÞ; Dk1 ¼
1ffiffiffiffi
N

p sðm; r0; rL; k1; k2; pÞ

Dr0 ¼
1ffiffiffiffi
N

p gðm; r0; rL; k1; k2; pÞ; Dk2 ¼
1ffiffiffiffi
N

p tðm; r0;rL; k1; k2; pÞ

DrL ¼ 1ffiffiffiffi
N

p hðm; r0; rL; k1; k2; pÞ; Dp ¼ 1ffiffiffiffi
N

p uðm; r0; rL; k1; k2; pÞ

ð17Þ
where functions f , g, h, s, t and u depend only on m, r0, rL, k1, k2 and p, and they must be deduced from a

particular case.
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8. Design and quality control in cyclic stress

For some material subjected to cyclic stress, if cumulative probability F and its tolerance dF are fixed to

estimate the resistance of the material to fatigue process, the variation of the dm, dr0, drL, dk1, dk2 and dl
produced by dF can be obtained according to the following equations:
F ¼ 1

�
� exp

�
� r� rL

r0

� �m��
1½ � k1 exp f � k2ðln lÞpg�

F þ dF ¼ 1

"
� exp

(
� r� rL

r0

� �mþdm
)#

½1� k1 expf�k2ðln lÞpg�

F þ dF ¼ 1

�
� exp

�
� r� rL

r0 þ dr0

� �m��
½1� k1 expf�k2ðln lÞpg�

F þ dF ¼ 1

�
� exp

�
� r� ðrL þ drLÞ

r0

� �m��
½1� k1 expf�k2ðln lÞpg�

F þ dF ¼ 1

�
� exp

�
� r� rL

r0

� �m��
½1� ðk1 þ dk1Þ expf�k2ðln lÞpg�

F þ dF ¼ 1

�
� exp

�
� r� rL

r0

� �m��
½1� k1 expf�ðk2 þ dk2Þðln lÞpg�

F þ dF ¼ 1

�
� exp

�
� r� rL

r0

� �m��
½1� k1 expf�k2ðln lÞpþdpg�

ð18Þ
which can determine dm, dr0, drL, dk1, dk2 and dp. When we make, Dm ¼ ldm, Dr0 ¼ ldr0, DrL ¼ ldrL,

Dk1 ¼ ldk1, Dk2 ¼ ldk2 and Dp ¼ ldp, we obtain:
Nm ¼ l2 f 2

Dm2
; Nr0 ¼ l2 g2

Dr2
0

; NrL ¼ l2 h2

Dr2
L

Nk1 ¼ l2 s2

Dk21
; Nk2 ¼ l2 t2

Dk22
; Np ¼ l2 u2

Dp2

ð19Þ
When l ¼ 1 then we have Dm ¼ dm, Dr0 ¼ dr0, DrL ¼ drL, Dk1 ¼ dk1, Dk2 ¼ dk2 and Dp ¼ dp, the reli-

ability is approximately equal to 70%; when l ¼ 2 the reliability is approximately equal to 90%, such re-

liabilities are obtained from larger of the Nm, Nr0, NrL, Nk1, Nk2 and Np values.

From the quality control point of view, in the case that Nm, Nr0, NrL, Nk1, Nk2 and Np are such that the

largest of them is larger than the number of experimental data used, N , the number of test samples that

must be made corresponds to the largest number, and all the parameters and rC for the given cumulative
probability F must be determined again. As the dispersion of the parameters must be the appropriate to get

a given percentage of them in accordance with admissible tolerance dF , the stress of design rC and the

fashion in which the material used must be controlled are thus defined. If rC ¼ rCðlÞ is not constant but a
function of l, the computations would be similar.
9. The case of a lower limit stress rL and an upper limit stress rS

The way in which both rL and rS are null means that there is not an upper limit for the size of the defects

producing the failure, nor a lower limit. The upper limit is reflected in rL and the lower limit in rS. The three
cases are shown in Figs. 9 and 10.
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Fig. 9. The three cases of function uðrÞ where it is equal to: ðr=r0Þm, ðr� rL=r0Þm and ðr� rL=rS � rÞmK.
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Fig. 10. The three cases of function uðrÞ in F ðrÞ ¼ 1� exp½�uðrÞ�, where uðrÞ is equal to: ðr=r0Þm, ðr� rL=r0Þm and

ðr� rL=rS � rÞmK. Functions F ðrÞ are tangent in the points r ¼ 0, r ¼ rS, r ¼ rL.
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The case we want to study now is the case of Kies–Kittl�s cumulative probability function (D�ııaz and

Morales, 1988)
F ¼ 1� exp

�
� r� rL

rS � r

� �m

K
�

ð20Þ
where rS is the limit stress above which there is always failure, K is a parameter named Kittl�s constant.
From Eq. (20) we deduce (Kittl, 2002):
ln nðrÞ ¼ ln ln
1

1� F

� �� �
¼ lnK þ m lnðr� rLÞ � m lnðrS � rÞ ð21Þ
Drawing the graph representing Eq. (21) we obtain Fig. 11.

In order to find parameters rL, rS, m and K that best fit the experimental data, let us calculate the
tangent in the midpoint of rL and rS, rm ¼ ðrL þ rSÞ=2:
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+
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

Fig. 11. Diagram of the Kies–Kittl function. The asymptotes of ln nðrÞ are lnrL and ln rS.
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d lnnðrÞ
d lnr

¼
d lnnðrÞ

dr
d lnr
dr

¼ m
r

r� rL

þ m
r

rS � r
ð22Þ
hence:
d lnnðrÞ
d lnr

� �
r¼ðrLþrSÞ=2

¼ 2m
rS þ rL

rS � rL

ð23Þ
Therefore, if in the vicinity of point lnðrLþrS
2

Þ we calculate the tangent to the curve tgc we shall have:
m ¼ 1

2

rS � rL

rS þ rL

d lnnðrÞ
d lnr

� �
r¼ðrLþrSÞ=2

ð24Þ
In the real calculation procedure, from the engineering point of view, the values of rL and rS are estimated
from Fig. 11, where the experimental values have been represented, and then, at point ln rLþrS

2
, the tangent

to the curve is estimated with the points of the vicinity, drawing a parabola of third or fourth degree. The

value of K is determined by using the following equation:
XN
i¼1

ln nðrÞ ¼ N lnK þ m
XN
i¼1

ðri � rLÞ þ m
XN
i¼1

lnðrS � riÞ ð25Þ
where N is the number of experimental values of stress ri. Then we have approximate values for rL, rS, m
and K. Now, if we calculate, for different values of rL, a series of values of rS, that will provide the cor-

responding m and K and if we calculate the corresponding chi-square value, v2, we can finally obtain a

minimum chi-square value, v2, that will provide the values of the parameters with an approximate value as

large as we want to. In symbols,
friLg $ frj�1;S; rj;S ; rjþ1;S ; . . .g ! fmij;Kijg i ¼ 1; . . . ;N ; j ¼ 1; . . . ;M ð26Þ
where M is an integer number. The numerical iteration process, applying the method explained here for

different values of rL, is shown in Fig. 12.
Changing rL, fri;Lg a set of curves is obtained whose minimum gives us a first approximation to the

parameters. In Fig. 13 we show how such process works.
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10. Conclusions

Using a numerical simulation method we determined the number of samples to be tested needed to
characterize the design and quality control for some material subjected to traction for a given mechanical

property as yield point, elastic limit stress, fracture strength, etc. Such number of samples must satisfy a

fixed cumulative probability with a fixed admissible tolerance for them. The method was employed for

materials subjected to graduals stress and cyclic stress. The method was shown for AISI 1020 steel. For the

case of gradual stress by means of random number generation function 30 stress values were simulated and

after 100 iterations Weibull�s parameters dispersions were obtained. Then with both fixed cumulative

probability and the admissible tolerance for them and with the design stress the variations of the Weibull�s
parameters were obtained. After that, employing Fisher�s matrix, which allows for a relation between the
number of samples tested with the dispersion of Weibull�s parameters, the number of samples to be tested



G. D�ııaz et al. / International Journal of Solids and Structures 40 (2003) 5001–5015 5015
were obtained. This procedure allows us to expect approximately 70% of the stress values to be within the

range of acceptance. In addition, in accordance to design stress value the error would not to be large and

the design will be safer if Weibull�s parameter rL takes zero value. A similar procedure was used for a cyclic

stress case where the random numbers generated were transformed into a product to solve the determi-
nation of Weibull�s parameters and the fatigue parameters from the joint cumulative probability function

separately. In the case of the cumulative probability function having an upper and lower limit stress the

parameters were estimated by numerical simulation approximation until a minimum chi-square was ob-

tained. Finally, the method explained here can be used, for example, as a quality control procedure to

accept or reject a portion of manufactured series material that follows a Weibull cumulative probability

function for some mechanical property with random behavior.
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