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Abstract

A numerical simulation method is used here for the design and quality control of a material subject to normal
gradual stress ¢ or a cyclic stress o, having fixed cumulative probability F and the number of cycles /; capable of
achieving a given mechanical property such as yield point, elastic limit stress, fracture strength, etc., as well as the
admissible tolerance dF the presence of such property is to be accepted with. With F and 6F, the stress of the design a¢
can be determined, as well as the variations 6m, dgy and da. of Weibull’s parameters m, oy and o1, respectively, that the
tolerance 6F admits. When cyclic stresses arise, other parameters must be introduced, 4, k, and p, which produce
variations ok, 6k,, and dp, respectively. The determination of the necessary number of samples to be tested in order to
carry out the quality control of the material, with a given probability of effectiveness, is obtained with variations om,
80y, dar, Ok, Ok, and dp, with the parameter dispersion estimated by numerical simulation, and with the help of a
property deduced from the Fischer’s matrix to obtain the parameter dispersion.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The use of probabilistic strength of materials (Weibull, 1939; Kittl and Diaz, 1988) had been directed, in
general, to determine the Weibull parameters of Weibull’s cumulative probability function for some ma-
terial subjected to both constant and variable stress fields for mechanical components in service or for
isolated samples manufactured to obtain such parameters. This probabilistic approach had been used on
diverse materials (Kittl and Diaz, 1988) subjected to gradual stress. When fatigue is included the problem is
more complex due to the singular characteristics of the fatigue process, so it needs the introduction of other
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parameters that consider such complexity. The mechanical design and quality control for components
subjected to gradual or cyclic stress, treated from a probabilistic point of view, requires of the knowledge of
the dispersions and the variations of the different parameters used to characterize the load process for a
certain level of cumulative probability of occurrence of some mechanical property, in order to define a
design stress value, including an admissible tolerance for such probability.

The main objective of this work is to obtain, through a numerical simulation method, the required
number of samples to be tested to define the design and quality control for some material subjected to
traction, including gradual and cyclic stress, that satisfy a fixed cumulative probability with a corre-
sponding admissible tolerance for them.

2. Gradual stress

According to Weibull’s theory (Kittl and Diaz, 1988; Kittl et al., 2001) the cumulative probability of
occurrence of some mechanical property F(o), for a material subjected to uniaxial stress field, is given by
the following expression:

F(a>:1—exp{—%<";0‘“)m} (1)

where o is the stress at which some mechanical property is verified, such as yield point, elastic limit stress,
fracture strength; 7 is the volume of the material, 75 is the unit of volume, o1 is one of Weibull’s parameters
and is the limit of stress bellow which the property will not occur; and the other Weibull’s parameters are m
and o, which depend on the manufacture process of the material. As all the samples are equal, V = V.

Once cumulative probability F is fixed design stress, oc, is obtained from Eq. (1). In addition, along with
cumulative probability F there is an admissible tolerance for such probability, 6F, associated to variations
dm, doy and bap, of Weibull’s parameters m, gy and a1, respectively. Such variations can be obtained from F
and OF using the following equations:

F:l_exp{_<“c6_‘oﬁ)m} (2a)
F+5F:1—exp{_(JCT—00L>m+6m} (2b)

el (e
F+6F =1 exp{ <00+800>} (2¢)
F+5F:1_exp{_(w) } (2d)
0

Provided that any part of the material is calculated using the same oc, the variations producing an ad-
missible tolerance 6F must be originated in Weibull’s parameters, that is to say, they come from the ma-
terial (see Fig. 1).

For the same value of oc, when the material, characterized by its respective Weibull’s parameters, is
changed from (m, gy, 0¢) to (m + dm, gy + 80y, o1 + do1), cumulative probability F is changed to F + dF.

With a close approximation, Eqgs. (2a) and (2b) determine dm, Egs. (2a) and (2c) determine 80y, and Eqgs.
(2a) and (2d) determine day. It is easily deduced from Fischer’s matrix (Kittl and Diaz, 1988) that the
dispersion of Weibull’s parameters Am, Aoy and Aoy are given by equations:
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Fig. 1. Diagram of cumulative probability.
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where N is the number of samples to be tested to obtain Am, Acy and Aay; functions f, g and /4 depend only
of m, oy and o, they are constants that may be deduced from a particular case. When the material is
subjected to a variable stress field the use of Fisher’s matrix is more complex and is not dealt with here (Diaz
et al., 2002). Thus, in this situation, a numerical simulation method to obtain the dispersion of the Weibull’s
parameters has been developed starting from values m, gy and o, determined through experimental values.
Normally the resulting values of m, gy and o are obtained using N = 30 testing samples and are an
outcome of obtaining the maximum correlation between independent variable In(¢ — ¢}) and In[In(1/
(1 — F))], where o} are several values of o1, that are taken from around the smallest value of ¢. From Eq. (1)
we obtain:

lné(a)zln[ln (ﬁ)} =mln(c — o) — mInag (4)

Thus, In &(0) is a linear function of In(o — o). In the Weibull diagram, In &(o) versus In o, when ¢ = o
then In &(¢) = —oo, which is a good way for obtaining the approximate value of o. In order to improve oy,
several values are chosen in the neighborhood of that first o value obtained and the best correlation with
better chi-square value, ¥, allows for the determination of such parameter.

In order to show how the numerical simulation method works Weibull’s parameters obtained from an
AISI 1020 steel (Diaz et al., 1999) subjected to traction test were used. Such steel was elected due to the fact
that it is fairly ductile and is usually employed in the construction of structures. In the case of this steel, the
following values can be considered: m = 14, oy = 53 MPa and o1 = 400 MPa.

The numerical simulation method used here does not require special software, it only needs a routine to
generate random numbers, and the following numerical determinations are easy. The method starts with
the knowledge of Weibull’s parameters m, oy and o from an experimental test for some material subjected
to traction. Therefore we know the cumulative probability function given by Eq. (1). Then, using a random



5004 G. Diaz et al. | International Journal of Solids and Structures 40 (2003) 5001-5015

number generation function we generated 30 random numbers and each one was replaced on the left side of
Eq. (1) in order to determine the respective stress value. This way we have a set of 30 simulated stress
values. After that, the set is put in a rising order. With the set sorted out, the cumulative probability is
evaluated using an estimator. And a new Weibull function is obtained. Finally, this process allows us to
estimate new values for Weibull’s parameters m, oy and . Many iterations can be made in order to obtain
other values for Weibull’s parameters. The computation scheme is:

j—1 o
{0< fgl}_’{o{gdﬂg}H{E/:lNz}ﬁ{mlﬂaévoiﬂ} j=1,...7100;

NS

i=1,...,N=30 (5)
where // are aleatory numbers, ¢} are simulated stress values, F} are cumulative probability estimators, N is
the total number of samples tested, and m/, a{) and ¢ are the Weibull parameters obtained by linear re-
gression using o] from approximations with a maximum correlation coefficient. One hundred simulations
of 30 testing samples were carried out and the cumulative probabilities F(m), F(ay) and F (o) were ob-
tained using the respective 100 values for each Weilbull parameter, as showed in Figs. 2-4. In order to
calculate Am, Aoy and Agp all the values that depart from a normal distribution were eliminated, thus
avoiding possible calculation errors. This can be seen in the isolated points on the right in Fig. 2 and on the
left in Fig. 4.

In this case j=1,...,100, i=1,...,30 and the dispersion values of Weibull’s parameters were:
Am = 5.25, Aoy = 10.6 MPa and Ag, = 8.06 MPa. With the help of Eq. (3) we may evaluate f, g and #:
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Fig. 2. Cumulative probability of Weibull’s parameter m.
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Fig. 3. Cumulative probability of Weibull’s parameter o.



G. Diaz et al. | International Journal of Solids and Structures 40 (2003) 5001-5015 5005

1 ral'
0.8 -
.
0.6¢
Flo)) Original : <o|>=412.65
0.4¢ . Ao =15.43
0.2k Corrected : <o) >=409.28
. Aoy =8.06
]
A

0ba . . . .
360 380 400 420 440 460 480
GL

Fig. 4. Cumulative probability of Weibull’s parameter o7 .

£ =+30Am =288
g = V30As, = 58.1 MPa (6)

h = V30Ac, = 44.2 MPa

For another hand Eq. (2) allows one to determine the expressions for the variations of Weibull’s parameters
dm, day and o and then we can find the number of testing samples required in a quality control in order to
get a dispersion compatible with the fixed values for the cumulative probability and its respective admissible
tolerance, F and &F. Such fixed values for F and dF depend on design conditions and are a variable
managed by the designer. The following equations shows how to determine the variations of Weibull’s

parameters:
In {ln (1—(1’l+5F)):| {

In[In (7)]

e 1/m
5oy — lL] e
)

om =

m

1
In 77

S0, — gc — 00 [ln (1*(F1+6F)>} " 1%,

oc —ao[In (47)]""

1 1/m
O'CZO'0|:11’1 <1—F‘>:| + oL

where oc is the design stress value. Now, using Eq. (3), i.e., the relations obtained from Fischer’s matrix,
that allows us to obtain the dispersions of Weibull’s parameters, with Eq. (7) we can determine the number
of samples to be tested through the following equations:

f2 2 h2

g
=5 NUOZT%7 NJL:@ (8)

Nm

where Nm, No, and No are the number of samples to be tested to determine Weibull’s parameters m,
and oy, respectively, compatible with the fixed cumulative probability and with its respective admissible
tolerance. Egs. (7) and (8) provide for a criterion to expect that approximately 70% of ¢ values are within a
range of acceptance. If we take 20 instead of d, we obtain approximately 90% of the values of ¢ within the
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range of acceptance. The highest value of the numbers of samples to be tested, given by Eq. (8), must be
chosen. In the case of quality control for some material when a set of material samples to be used is
available, and N samples are tested, where N is the largest value obtained from Eq. (8), parameters m, oy
and o can be determined, and for design stress value, o¢, if the new cumulative probability, obtained from
Eq. (7) is higher than the previous F + &F, due to new Weibull parameter values then the set of samples
must be rejected or a new oc must be obtained.

3. Determination of Weibulls parameters by the moment method in gradual stress

From Weibull’s cumulative probability function given by Eq. (1), it is easy to show that (Kittl and Diaz,
1988; Kittl et al., 2001):
Ac  [F(1+2)-r*(1+1)"
T o1 r{i+1)
where @ is the mean value, Ag is the dispersion and I is Euler’s gamma function. The mean value and its

dispersion are given by the following equations:

1
N4

©)

=

0= g;

1

(10)

1 & )
Ao = m-;(ai—a)
both are estimated for a series of testing experimental values ¢; and Weibull’s parameter m is found by using
Eq. (9). In order to introduce oy in Eq. (9), trials are made with different values within the vicinity of a o
obtained with a certain approximation from a Weibull diagram In &() = In[In(15)] versus In o as shown in
Fig. 5. Then, for the value chosen for o1 the chi-square value, 3>, must be minimized (see Fig. 6). The other
Weibull parameter o, is obtained from the following expression:

(=] “”

When gy is ignored we proceed by using Eq. (9) with o = 0.
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Fig. 5. Weibull’s diagram of a series of values of g, corresponding to a traction test for an AISI 1020 steel.
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Fig. 6. Determination of o by obtaining the minimum value of chi-square, »°.

4. Dispersion of Weibulls parameters and estimation of the number of samples to be tested for gradual stress

In the case of the steel employed here with the value of Weibull’s parameters m, gy and o1, the numerical
simulation process described in scheme (5) was used to generate 10 simulated test with N = 30 samples in
order to obtain the mean values of Weibull’s parameters and their dispersions when the limit stress oy, is
both different from zero and equal to zero. Their respective values are shown in Table 1.

F being the level of cumulative design probability, and &F its respective tolerance, the variation of
parameters om, dgy and doyp, is obtained from Eq. (2). Table 2 shows the respective Weibull’s parameter

Table 1
Weibull’s parameters m, oy and g1, their mean values and their dispersions for AISI 1020 steel samples, subjected to traction test,
randomly generated by numerical simulation process, considering limit stress both o # 0 and o, =0

Limit stress o Weibull’s parameters Mean value Dispersions
g, #0 m 15.6 Am =1
0o 54 MPa Aoy = 0.5 MPa
oL 400 MPa Aoy =0 MPa
oL=0 m 135.3 Am =21
ay 453 MPa Acy = 0.83 MPa
Table 2

Weibull’s parameters deviations dm, dg, and &, and design stress values for AISI 1020 steel, subjected to traction test, with a fixed
cumulative probability F and admissible tolerance 8F, with F = 1077 and F + 8F = 107, and considering limit stress both ¢ # 0 and
gy = 0

Limit stress o Weibull’s parameters Variations parameters Stress of design ac
oL #0 m om = -2 417 MPa

[} 60’0 = —8 MPa

oy 60’]_ = -3 MPa
g, =0 m dm = —19.3 402 MPa

0o 00y = —7.64 MPa




5008 G. Diaz et al. | International Journal of Solids and Structures 40 (2003) 5001-5015

Table 3

Number of samples to be tested to estimate Weibull’s parameters m, oy and ¢ with a fixed cumulative probability F and admissible
tolerance 8F, with F = 1077 and F + 8F = 107, for AISI 1020 steel samples, subjected to traction test, randomly generated by nu-
merical simulation process, considering limit stress both ¢; # 0 and o =0

Limit stress o Number of samples to estimate the corresponding Weibull’s parameters

Nm Nay Nay
oL #0 207 53 217
o =0 36 0.35 -

variations obtained when limit stress oy is both different from zero and equal to zero in the case F = 107’
and F + 8F = 107°.

All dispersions in each Weibull parameter may be increased by a constant factor, but in order to simplify
let a same factor u for each one be, where u is a real number. Then, we can generalize the use of Fisher’s
matrix property (Kittl and Diaz, 1988), given by Eq. (3), to obtain the number of samples to be tested to
determine the Weibull parameters compatible with the fixed cumulative probability and with its respective
admissible tolerance. Therefore, considering Egs. (3) and (8), it gives:

1 > @ AmN
#Am = —f(m7O-OaO-L); Nm f £ ”

VN T am om
1 g 12-ANoy-N
pAaoy = ﬁg(mva()a oL); Nog= 500~ oy (12)
1 ®o 2-AeL-N
:uAUL - \/_]—v'h(ma 00, GL)7 NO-L - 62O'L - 82O'L

When u = 1 the reliability is approximately equal to 70%. The comments below Eq. (8) can also be applied
here. Table 3 shows such number of test samples in order to obtain Weibull’s parameters with a fixed
cumulative probability F and with a fixed admissible tolerance 6F for a determined design stress value oc,
when the limit stress o is both different from zero and equal to zero.

The difference between design stress values oc when the limit stress o is both different from zero and
equal to zero is: (417 —402 MPa )/402 MPa = 3% i.e. a very small value. Thus, the error would not be too
large and the design would be safer if value o = 0 is adopted.

5. Cyclic stress

In the case of the material being subjected to cyclic loads the phenomenon can be studied using a
probabilistic approach too and taking into account different mechanical properties. Fig. 7 shows the
evolution of one of these mechanical properties, such as yield point, elastic limit stress, fracture strength,
with the application of a gradual load. We will assign only one cycle / = 10° to this load, where / is the
number of load cycles. When more cycles are applied, / = 10',7 = 10%,...,/ = 107, the curve of the cu-
mulative probability by cyclic stress ¢ and number of cycles I, F(a, 1), takes up values starting from a limit
stress a1, that we shall consider independent from / due to the mechanism of fatigue by cyclic loads.

For a given ¢, the way in which / varies is shown in Fig. 8, where it can be presumed that there is an
evolution similar to one of Weibull’s function for F(ag,! = k).
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6. Determination of the parameters in cyclic stress

When we consider cyclic stress the cumulative probability F(o, /) may be written as follows:

F(a,l) = [1 — exp{ — (a— GL)mH [1 — ki exp{—kx(In [)'}] (13)

)

in which m, ¢y and o are the known Weibull’s parameters (Kittl and Diaz, 1988; Kittl et al., 2001) and &,
k, and p are other parameters that may describe the process of fatigue due to cyclic stress (Kanninen and
Popelar, 1985; Suresh, 1991). We can determine parameters m’, ), o?, k¥, k9 and p° as a first approximation
to true parameters m, oy, o1, k1, k; and p, and in this case only six points are enough to determine them. In
order to get a better approximation, the following expressions can be minimized:

ManF — F(o, D]

n
Ei:ﬁllé 0; < 0; lj<1

F(o,l) = F(0,l;m, 00,01,k ks, p)
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where Fj; is the observed cumulative probability, N is the number of samples tested and #;; is the number of
samples subjected to g; with /; number of cycles. If we made a differential expansion to F(a, /) the following
expression is obtained:

F(o,1) :F(a,l;m:mOJram,ao:ang@ao,aL:angaaL,kl :k?+6k1,k2:kg+6k2,

p=p"+03"
3F (0, 1;0) oF (0, 1;0) 0F (0, 1;0)
:f7(()'7 1;m070'8700Lyk(])5k(2)1p0) + om am+ 60'0 60'0+ 60L aO-L
0F (a,1;0) 0F (0, 1;0) 0F (0, 1;0)
0 0 0 !

In Eq. (15) Om, 0oy, Oy, Ok,, Ok, and Op can be obtained in such a way that Eq. (14) is minimized by using
the common least squares method. Finally:

m = m° + Om

op = ag + 0oy

oL = ag + 0oL,

16
ky = kY + 0k, (16)
ky = k3 + 0k
p=p"+0p

7. Dispersion of the parameters in cyclic stress

In order to obtain the dispersion of the parameters in the case of the material being subjected to cyclic
stress we made a numerical simulation with a process similar to that described for materials subjected to
gradual loads. The procedure used here was the following: cumulative probability ' has to be a random
number and is obtained from a random number generation function, letting 0 < 4; < 1 be; this number may
be transformed into a product 4 = 4;4;. We must randomly attribute 4; to the first part of Eq. (13) or to the
second part, 1; < 4; <1, then the second is 4; = A/A;. We obtain ¢; from A; and /; from Z,. Once N pairs
(0;,1;) are obtained, we can determine F;, according to Eq. (14) and the mean values of parameters m, g,
oL, ki, ko and p are obtained for each one of those numerical simulations as well as their Am, Aagy, Aoy, Ak,
Ak, and Ap. According to Fisher’s matrix (Kittl and Diaz, 1988) it may be verified that:

1

Am = \/——f(’n,Uo,UL,kukz,P)' Ak = s(m, 09,00, ki, k>, p)

1
N ’ VN
1 1
AO-O :ﬁg(mva()yabkhk%p); AkZ :ﬁt(mva()vabklakzap) (17)

1 1
Aoy, = —=h(m,00,0L,k1,ky,p); Ap=——=u(m, oo, 0L,k ks,
L \/ZV ( 0,0L, K1 2p) 4 \/]V ( 0,0L, K1 219)

where functions f, g, 4, s, t and u depend only on m, oy, g, k1, k; and p, and they must be deduced from a
particular case.
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8. Design and quality control in cyclic stress

For some material subjected to cyclic stress, if cumulative probability ' and its tolerance oF are fixed to
estimate the resistance of the material to fatigue process, the variation of the dm, day, do1, dk;, Ok, and o/
produced by 86F can be obtained according to the following equations:

F= [l—exp{ - (a_al“)m}][l—klexp{—kz(lnl)p}]

40

o
F+3F=|1—exp{ — (“ — “L> H [l — k exp{—k»(In 1)}]
F+8F = |1 —exp 4>MH [l — & exp{—ks(In 1’}]

M)H (1 — ky exp{—ks(In 1)"}] (18)

F+0F = |1 —exp

o om)m}: [1 — (ki + ok1) exp{—ky(In 1)’}]

F+0F=|1—exp

{

o
Fosr=|1-en{ -

{

{

o— O'L)m}: (1 — ky exp{—(k> + k) (In 1) }]

F+8F = :1 —exp { - (" - “L)} (1 — ky exp{—ky(In 1)"*]

which can determine dm, day, 6o, Ok, 6k, and 6p. When we make, Am = udm, Aoy = udoy, Aoy = uday,
Akl = ,uSkl, Akz = ,USkz and Ap = ,uSp, we obtain:

f2 ) g2 5 h2
N = 2—. N = — N == ~
m u Am27 [0 u Aa(z)v oL u AO'ZL
) 8 , P ) U 19
Nki = 12— Nky=>—: Np=p’—
1 u Aklz7 2 u Ak§7 p U Ap2

When p =1 then we have Am = dm, Agy = d0y, AgL = dar, Aky = Sk, Ak, = 6k, and Ap = dp, the reli-
ability is approximately equal to 70%; when u = 2 the reliability is approximately equal to 90%, such re-
liabilities are obtained from larger of the Nm, Nay, Nor, Nk, Nk, and Np values.

From the quality control point of view, in the case that Nm, Nay, Noy, Nki, Nk, and Np are such that the
largest of them is larger than the number of experimental data used, N, the number of test samples that
must be made corresponds to the largest number, and all the parameters and o¢ for the given cumulative
probability F must be determined again. As the dispersion of the parameters must be the appropriate to get
a given percentage of them in accordance with admissible tolerance &F, the stress of design oc and the
fashion in which the material used must be controlled are thus defined. If oc = o¢(/) is not constant but a
function of /, the computations would be similar.

9. The case of a lower limit stress o1, and an upper limit stress og

The way in which both a1 and gg are null means that there is not an upper limit for the size of the defects
producing the failure, nor a lower limit. The upper limit is reflected in ¢ and the lower limit in os. The three
cases are shown in Figs. 9 and 10.
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Morales, 1988)
F=1- exp{ — (
os — 0

From Eq. (20) we deduce (Kittl, 2002):
)] =InK+mln(c — oL) — mlIn(os — o)

Drawing the graph representing Eq. (21) we obtain Fig. 11.
= (GL + 0'3)/2:

tangent in the midpoint of ¢ and gs, 0,

Fig. 10. The three cases of function ¢(c) in F(g) =1 —exp[—¢(o)], where (o) is equal to: (a/a¢)”, (0 —ar/0cp)" and

(6 — o1 /os — 6)"K. Functions F(o) are tangent in the points ¢ =0, 0 = 05, 0 = 0.
The case we want to study now is the case of Kies—Kittl’s cumulative probability function (Diaz and

0—0 m
) <)
where og is the limit stress above which there is always failure, K is a parameter named Kittl’s constant.

(20)

(1)

1
1 =In|ln{ ——
né(o) =1In [ n < [ F
In order to find parameters a1, s, m and K that best fit the experimental data, let us calculate the
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Ing(o) |

Inc

In(sL In (GL +cS] | ncs
2

Fig. 11. Diagram of the Kies—Kittl function. The asymptotes of In £(o) are Inoy, and In gs.

dIné(o) dinc(o) 1':15(6) o o
—_do_ _ 22
dInc % m0—0L+mos—o (22)
hence:
[dlné(a)] _ s toL (23)
dIne |, 102 os — 0L

Therefore, if in the vicinity of point In(“5%) we calculate the tangent to the curve tgy we shall have:

_los—aL [dlné(a)

m =
209+o0.| dlno L_(GL+US)/2

(24)

In the real calculation procedure, from the engineering point of view, the values of o1 and og are estimated
from Fig. 11, where the experimental values have been represented, and then, at point In %, the tangent
to the curve is estimated with the points of the vicinity, drawing a parabola of third or fourth degree. The
value of K is determined by using the following equation:
N N N
Z Iné(6) =NInK +m
i=1 i—

(oi—oL)+m Z In(gs — 0;) (25)

i=1 i=1

where N is the number of experimental values of stress o;. Then we have approximate values for o, gs, m
and K. Now, if we calculate, for different values of o, a series of values of ag, that will provide the cor-
responding m and K and if we calculate the corresponding chi-square value, 2, we can finally obtain a
minimum chi-square value, y2, that will provide the values of the parameters with an approximate value as
large as we want to. In symbols,

{O'i]_}<—>{0/,1AS;ijS;0_i+1ys;...}—>{mi/7Kl:/-} i:1,...,N; ]:1,,M (26)

where M is an integer number. The numerical iteration process, applying the method explained here for
different values of g1, is shown in Fig. 12.

Changing a1, {0;L} a set of curves is obtained whose minimum gives us a first approximation to the
parameters. In Fig. 13 we show how such process works.
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Fig. 12. Variation of chi-square, y> for an estimated value of oy, ;1 and several values of os.

O

Fig. 13. Curves of chi-square, 3> versus different o;;. The minimum of chi-square, 7> provides oy as a first approximation.

10. Conclusions

Using a numerical simulation method we determined the number of samples to be tested needed to
characterize the design and quality control for some material subjected to traction for a given mechanical
property as yield point, elastic limit stress, fracture strength, etc. Such number of samples must satisfy a
fixed cumulative probability with a fixed admissible tolerance for them. The method was employed for
materials subjected to graduals stress and cyclic stress. The method was shown for AISI 1020 steel. For the
case of gradual stress by means of random number generation function 30 stress values were simulated and
after 100 iterations Weibull’s parameters dispersions were obtained. Then with both fixed cumulative
probability and the admissible tolerance for them and with the design stress the variations of the Weibull’s
parameters were obtained. After that, employing Fisher’s matrix, which allows for a relation between the
number of samples tested with the dispersion of Weibull’s parameters, the number of samples to be tested
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were obtained. This procedure allows us to expect approximately 70% of the stress values to be within the
range of acceptance. In addition, in accordance to design stress value the error would not to be large and
the design will be safer if Weibull’s parameter g takes zero value. A similar procedure was used for a cyclic
stress case where the random numbers generated were transformed into a product to solve the determi-
nation of Weibull’s parameters and the fatigue parameters from the joint cumulative probability function
separately. In the case of the cumulative probability function having an upper and lower limit stress the
parameters were estimated by numerical simulation approximation until a minimum chi-square was ob-
tained. Finally, the method explained here can be used, for example, as a quality control procedure to
accept or reject a portion of manufactured series material that follows a Weibull cumulative probability
function for some mechanical property with random behavior.
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